Mark scheme - Polyesters and Polyamides

Questi on		Answer/Indicative content	Mark s	Guidance
1	i	Ester Amide Amine Carboxylic acid 4 groups correct $\checkmark \checkmark \checkmark$ 3 groups correct $\checkmark \checkmark$ 2 groups correct $\sqrt{ }$	$\begin{gathered} 3 \\ (\mathrm{AO} 1 . \\ 2 \times 3) \end{gathered}$	IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, - Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group e.g. benzene, phenyl, aryl, arene, methyl
		Methanol 1 mark $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH} \checkmark$ Both amino acids shown with $\mathrm{NH}_{3}{ }^{+} \checkmark$	$\begin{gathered} 4 \\ (\mathrm{AO} 2 . \\ 5 \times 4) \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW + charge on H of NH_{3} group, i.e. $\mathrm{NH}_{3}{ }^{+}$ If BOTH amino acids are shown with NH_{3} groups (without the + charge) OR as $\mathrm{NH}_{2}{ }^{+}$groups, award 2 of the 3 marks for the amino acids If BOTH amino acids are shown as correctly balanced salts, e.g $\mathrm{NH}_{3} \mathrm{Cl}$, all marks can be awarded.
		FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 22.4 OR 22 OR 23 award 3 marks n (aspartame) in 1 can $=0.167 / 294=5.68 \times 10^{-4}(\mathrm{~mol}) \checkmark$ n(aspartame) limit per day $=1.7 \times 10^{-4} \times 75=0.01275$ $(\mathrm{mol}) \checkmark$ number of cans $=0.01275 / 5.68 \times 10^{-4}=22.4 \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 2 . \\ 2 \times 3) \end{gathered}$	If there is an alternative answer, apply ECF and look for alternative methods Alternative methods $\begin{aligned} & n(\text { aspartame }) \text { in } 1 \text { can }=0.167 / 294 \\ & =5.68 \times 10^{-4}(\mathrm{~mol}) \checkmark \\ & n(\text { aspartame }) \text { per } \mathrm{kg}=5.68 \times 10^{-4} / 75 \\ & =7.57 \times 10^{-6}(\mathrm{~mol}) \checkmark \\ & \\ & \text { number of cans }=1.7 \times 10^{-4} / 7.57 \times 10^{-6} \\ & =22.4 \checkmark \end{aligned}$ OR n(aspartame) limit per day $=1.7 \times 10^{-4} \times 75$ $=0.01275(\mathrm{~mol}) \checkmark$ mass(aspartame) limit per day $=0.01275 \times 294$ $=3.7485(\mathrm{~g}) \checkmark$

6.2.3 Polyesters and Polyamides

				$\begin{aligned} & \text { number of cans }=3.7485 / 0.167 \\ & =22.4 \mathrm{~V} \end{aligned}$
		Total	10	
2	i	 Ester link (must be displayed) \checkmark Rest of structure \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1 . \\ 2) \\ (\mathrm{AO} 2 . \\ 5) \end{gathered}$	ALLOW the ' O ' or $\mathrm{C}=\mathrm{O}$ at either end, e.g. IGNORE brackets IGNORE n End bonds' MUST be shown (solid or dotted) DO NOT ALLOW more than one repeat unit
		the ester/ ester bond/ ester group /polyester can be broken down \checkmark OR It can be hydrolysed \checkmark	$\begin{gathered} 1 \\ \text { (AOB. } \\ 2) \end{gathered}$	IGNORE references to photodegradable 'Bond breaks' is not sufficient - no reference to ester bond
		SOCl_{2} in equation \checkmark Structure of diacyl dichloride \checkmark Complete balanced equation \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 1 . \\ 1) \\ (\mathrm{AO} 1 . \\ 2) \\ (\mathrm{AO} 2 . \\ 6) \end{gathered}$	ALLOW alternative approach using PCl_{5} or PCl_{3}
		Total	6	
3			$\begin{gathered} 2 \\ (\mathrm{AO} \\ 3.2) \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous NOTE: For ECF, any structure must have correct number of bonds to $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and N DO NOT ALLOW structure of dimer Question states molecular formula $=\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}$ Examiner's Comments Candidates were supplied with information about an unfamiliar reaction of an amino acid and asked to predict a possible equation. Many candidates suggested $\mathrm{H}_{2} \mathrm{O}$ as one product, being the

6.2.3 Polyesters and Polyamides

				difference in the formula of the amino acid and the $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}$ cyclic organic product. Any cyclic structure of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}$ that met the bonding rules for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O was credited. Examples included a 4-membered ring lactam and substituted cyclopropenes. A significant number of candidates showed an equation for the reaction of two molecules of the amino acid to form $2 \mathrm{H}_{2} \mathrm{O}$ and a cyclic dipeptide. Although chemically feasible, the dipeptide could not be credited because the molecular formula was $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}$ in the question. This error could have been avoided if the information in the question had been used.
		Total	2	
4		One mark for each correct structure/reagent as shown below	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW $\mathrm{PCl}_{5} \mathrm{OR} \mathrm{PCl}_{3}$ for reagent mark. IGNORE references to temperature for reagent mark IGNORE additional reagents shown with $\mathrm{SOCl}_{2} / \mathrm{PCl}_{5} / \mathrm{PCl}_{3}$ e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{AlCl}_{3}, \mathrm{HCl}$ etc. IGNORE names (question asks for structures of organic compounds and formula of reagent) DO NOT ALLOW more than two repeat units ALLOW 1 mark for one correct repeat unit e.g. 'End bonds' MUST be shown (do not have to be dotted) ALLOW the ' O ' at either end i.e. IGNORE brackets IGNORE n Examiner's Comments Compound \mathbf{H} was also the focus for this question. Most candidates were able to provide the structure of the acyl chloride obtained from \mathbf{H} but only some identified SOC_{2} as the correct reagent. Common incorrect reagents included HCl and AlCl_{3}. Most candidates recognised that polymer I was a polyester but only some were able to draw two repeat units correctly. Candidates are advised to

6.2.3 Polyesters and Polyamides

6.2.3 Polyesters and Polyamides

(

				structural formulae such as HOCHRCOOH , with many omitting the H atom from CHR. Few candidates identified the reaction as redox, with many giving neutralisation instead.
		Equation Organic product \checkmark Balance $\sqrt{ }$ Type of reaction Condensation OR esterification \checkmark	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous ALLOW 1 mark of the 2 equation marks for formation of ' 3 ring' with balanced equation: ALLOW condensation polymerisation ALLOW addition-elimination IGNORE elimination IGNORE dehydration Examiner's Comment: As with 4(b)(ii), candidates found this question difficult. It was not often that the dimer was seen but, when it was, the structure was usually correct. Balancing required $2 \mathrm{H}_{2} \mathrm{O}$ and the balancing 2 was often omitted. In contrast with 4(b)(i), many more candidates identified the type of reaction, here condensation or esterification.
		Total	6	
7	a ${ }^{\text {a }}$		2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW Examiner Comments All but the weakest candidates scored two marks for the two monomers that could be used to produce Nylon 6,6.
		$\left(n=\frac{21500}{226}=\right) 95$ (repeat units) $\quad \checkmark$	1	MUST be a whole number. DO NOT ALLOW an answer that uses an incorrect molar mass in the working. ALLOW 96 Examiner Comments This was a fairly simple calculation where candidates were expected to divide the relative molecular mass of the polymer by the relative

				molecular mass of a single repeat unit (226) to establish the number of repeat units present in the polymer. Many candidates obtained the correct answer. Those that did not gain credit made a simple error in their calculation of the relative molecular mass of the repeat unit. Answer 95
		curly arrow from ${ }^{-} \mathrm{CN}$ to carbon atom of $\mathrm{C}-\mathrm{C} /$ bond \checkmark Dipole shown on $\mathrm{C}-\mathrm{C} /$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}{ }^{\delta-}$, AND curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to Cl atom \checkmark correct organic product AND $\mathrm{Cl}^{-} \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of ${ }^{-} \mathrm{CN}$ OR CN- OR from minus sign on C of ${ }^{-} \mathrm{CN}$ ion (then lone pair on CN^{-}does not need to be shown) IGNORE NaCl ALLOW $\mathrm{S}_{\mathrm{N}} 1$ mechanism: Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}^{\delta-}$, AND curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to Cl atom \checkmark Correct carbocation AND curly arrow from - CN to carbocation. Curly arrow must come from lone pair on C of ${ }^{-} \mathrm{CN}$ OR CN^{-} OR from minus sign on C of ${ }^{-} \mathrm{CN}$ ion (then lone pair on CN^{-}does not need to be shown) \checkmark correct organic product AND $\mathrm{Cl}^{-} \checkmark$ Examiner Comments The mechanism for the reaction of 1chloropropane was well done with the majority of candidates scoring two or three of the marks. Marks were not awarded when candidates used a negative charge or a lone pair sited on the nitrogen as the starting point for a curly arrow in the first stage of the reaction mechanism. The final marking point was awarded for the production of a $\mathrm{C} /{ }^{-}$ion. The placing of curly arrows, dipoles and Ione pairs of electrons are important when communicating by mechanisms.
			3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE name(s) ALLOW

	Reagents Reaction 2: H_{2} AND $\mathrm{Ni} \checkmark$ Reaction 3: Correct formula of an aqueous acid e.g. $\mathrm{HC} /(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \checkmark$	ALLOW any suitable metal catalyst e.g. Pt ALLOW LiAlH_{4} for reagent in reaction 2 DO NOT ALLOW NaBH_{4} for reagent in reaction 2 IGNORE names (question asks for formulae) IGNORE references to temperature and/or pressure ALLOW H ${ }^{+}(\mathrm{aq})$ IGNORE dilute ALLOW formula of an acid AND water e.g. $\quad \mathrm{HC} /$ AND $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{H}_{2} \mathrm{O}$ Examiner Comments Although many candidates were able to provide the structure of methanal as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted as suitable alternatives. It should be noted that hydrolysis is carried out using aqueous acid and that dilute acid is not a suitable alternative.
	Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton $/ \mathrm{H}^{+} \checkmark$	IGNORE NH_{2} group donates electron pair ALLOW nitrogen donates an electron pair to \mathbf{H}^{+} DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the -OH group Compound \mathbf{H} is a base is not sufficient (role of lone pair required) DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton $/ \mathrm{H}^{+}$required) ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW i.e. charges not required IF charges are shown both need to be present ALLOW charge either on \mathbf{N} atom or $\mathrm{NH}_{3}{ }^{+}$ IF displayed then + charge must be on the nitrogen Examiner Comments Only 20\% of candidates were awarded both marks for this question. The commonest error was a failure to state that the N atom has a lone pair of electrons that can gain a proton. Answers stating

6.2.3 Polyesters and Polyamides

				that amines accept protons or that a salt is produced when an acid reacts with a base were not credited. Where a full displayed structure is given the positive charge must be shown on the nitrogen atom, although $-\mathrm{NH}_{3}{ }^{+}$is acceptable. As the question required the formula of the salt, the Cl had to be included.
		 Ester link Rest of structure $\sqrt{ }$ (polymer \mathbf{J} is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n Broken down by water is not sufficient IGNORE references to photodegradable Examiner Comments The most common mark for this question was two out of the three marks available, with candidates giving a correct structure of the polymer but failing to express that the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.
		Total	14	
8	i	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \checkmark$	1	
		2,3- dihydroxybutanedioic acid \checkmark	1	ALLOW 2,3-dihydroxybutane-1,4-dioic acid ALLOW absence of hyphens or extra hyphen or space, e.g. 2,3-dihydroxy butanedioic acid ALLOW full stops or spaces between numbers e.g. 2.3 dihydroxybutanedioic acid
		 Correct amide link \checkmark Rest of structure \checkmark	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown IGNORE brackets IGNORE n

6.2.3 Polyesters and Polyamides

		$\left[\mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}{ }^{+}\right]\left[{ }^{\left.-\mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COO}^{-}\right]}\right.$ OR $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}\right]^{2+}\left[\mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COO}\right]^{2-}$ Positive ion correct \checkmark Negative ion correct \checkmark	2	ALLOW correct structural $\mathbf{O R}$ displayed $\mathbf{O R}$ skeletal formulae OR a combination of above as long as unambiguous ALLOW charge either on N atom or $\mathrm{NH}_{3}{ }^{+}$Negative charge must be on COO^{-} ALLOW $\left[\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}{ }^{+}\right]\left[{ }^{-} \mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COOH}\right]$
		Total	6	
9	i	(optical isomers are) non-super imposable mirror images \checkmark Two 3D structures of serine that are mirror images irrespective of connectivity \checkmark Correct connectivity in both structures \checkmark	3	
		Dipeptide Ser-Gly Dipeptide Gly-Ser Esterification of OH on Ser	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW structures in any order
		Total	6	
	i		1	ALLow correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous DO NOT ALLOW more than one repeat unit DO NOT ALLOW if structure has no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n Examiner's Comments

6.2.3 Polyesters and Polyamides

				Although many incorrect structures and structures with two repeat units were seen, this question was well answered by the majority of candidates.
		(Ester links in PLA are) hydrolysed \checkmark Any two from: - Ester (links in the polymer) OR (PLA is a) polyester - Monomer/lactic acid/product (is soluble because it) forms hydrogen bonds to water - polymer is photodegradable - the $\mathrm{C}=\mathrm{O}$ bond absorbs radiation/uv/light $\checkmark \checkmark$ QWC: hydrolysed/hydrolysis/hydrolyses spelled correctly in the correct context	3	ANNOTATE WITH TICKS AND CROSSES ETC. ALLOW (ester) hydrolysis/(ester) hydrolyses IGNORE acid/alkaline (hydrolysis) IGNORE PLA forms hydrogen bonds to water IGNORE biodegradable IGNORE infrared radiation Maximum of 2 marks if hydrolysed/hydrolysis/hydrolyses does not appear inthe answer ALLOW (ester) hydrolyzed Examiner's Comments The question discriminated well and relatively few candidates were able to score full marks despite there being several alternative scoring points listed in the mark scheme. Many based their answer on an explanation of the polymer dissolving in water rather than the dissolving process taking place after hydrolysis of the polymer chain.
		Total	4	
	i	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} \checkmark$ $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} \checkmark$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW acid chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl}$ Examiner's Comments Very well answered. The vast majority of candidates scored full marks on this question.
	i		1	Both answers required for one mark

M5 Compound G

OR

Is an addition polymer \checkmark

M6 Compound \mathbf{H}

OR

is a condensation polymer \checkmark

ALLOW ECF from $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCOOH}$ for the formation of compound G or compound H

ALLOW alkene forms addition polymer / polymer with same empirical formula as monomer

ALLOW equation for reaction
n

ALLOW amino acid forms condensation polymer OR (molecules of) compound F join / bond / add / react / form polymer and water / small molecule ALLOW equation for reaction

Examiner's Comments

This question discriminated well and many well organised and well-presented answers were seen. Candidates were usually able to identify the aldehyde structure in compound \mathbf{E} and those who failed to include a chiral centre in compound \mathbf{E} had possibly missed essential information in the stem of the question. However, they could still score marks for the polymer structures by the application of error carried forward. Some candidates correctly identified the four structures but then missed the last two marks for a description of how the polymers are formed. Although labels were not required to score marks for the four structures, the description of the formation of the polymers had to be linked to the correct structure or the correctly labelled compound and some candidates lost marks here because their description was linked to the wrong polymer.

6.2.3 Polyesters and Polyamides

b	i		1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments The majority scored this mark for the structure of glutamic acid.
			2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW a cyclic amide with a 3 membered ring ALLOW OR a structure obtained by condensation of a glutamic acid molecule with the first cyclic amide Examiner's Comments Marks were awarded for a variety of structures and although few candidates scored both marks here, examiners were impressed by the excellent attempts to produce workable cyclic structures.
c	${ }^{\text {i }}$	Ester AND amide \checkmark	1	ALLOW peptide for amide Examiner's Comments Identification of functional groups in polymers seemed to be an area of weakness. Many candidates correctly named one of the functional groups but both were required for the mark. Examples of incorrect responses included amine, carboxylic acid, alcohol and ketone.

6.2.3 Polyesters and Polyamides

				2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Functional groups do not need to be fully displayed ALLOW structures as shown; the O-H bond and the N-H bonds in the functional groups do not need to be displayed DO NOT ALLOW -COOH Penalise incorrect connectivity to OH once in this question Examiner's Comments The question asked for the functional groups to be displayed in the structures of the monomers. Most candidates scored well here but this was only possible because the mark scheme did not require the functional groups to be fully displayed.
			(The molecule / amide / ester) can be hydrolysed \checkmark	1	ALLOW (the molecule / amide / ester) can form hydrogen / Hbonds with water IGNORE acid / base Examiner's Comments A well answered question with marks equally divided between answers that either suggested that the polymer can be hydrolysed or that the polymer can form hydrogen bonds with water. A statement that the polymer is soluble in water was not sufficient to score the mark.
			Total	13	
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	a			2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW peptide chains Examiner's Comments Many correct dipeptide structures were seen. Common errors included peptide chains and including extra oxygen atoms in the amide link.
			alanine at pH 6.0	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous

6.2.3 Polyesters and Polyamides

		 serine at pH 10.0		ALLOW + charge on N or H : i.e. ${ }^{+} \mathrm{NH}_{3}$ or $\mathrm{NH}_{3}{ }^{+}$ DO NOT ALLOW - -' charge on C i.e. - COO DO NOT ALLOW if structure is incomplete Examiner's Comments Most candidates gave the correct structure for the alanine zwitterion. Common errors include the protonation of the amine group and the ionisation of the alcohol group in serine.
		 OR	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous IGNORE bond angles DO NOT ALLOW more than one repeat unit ALLOW end bonds shown as ---- DO NOT ALLOW if structure has no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n Examiner's Comments This question proved to be a difficult challenge for many. Extra oxygen atoms or two repeat units were occasionally seen.
			1	ALL correct for one mark Examiner's Comments This part was answered well by many candidates. Some missed the chiral centre on the proline moiety or added an asterisk to a carbonyl carbon.
	i	any two from: no / fewer side effects	2	IGNORE toxic / harmful

	increases the (pharmacological) activity / effectiveness Reduces / stops the need for / cost / difficulty in separating stereoisomers / optical isomers		IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate" Examiner's Comments Most candidates gained this mark by stating that the use of a single stereoisomer results in fewer side effects and increased pharmacological activity. Vague answers and comments about a reduced dose did not score marks.
		4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on H of NH_{2} groups, i.e. $\mathrm{NH}_{2}{ }^{+}$ IGNORE negative (counter) ions Examiner's Comments This question discriminated well. Most candidates were able to score one mark for the formula of ethanol. Only a small number of able candidates scored full marks for including the correct formulae for the protonated amine groups formed during acid hydrolysis.
	idea of separating (the components / compounds) AND idea of (identifying compounds by) comparison with a (spectral) database	1	ALLOW (identifies compounds) using fragmentation (patterns) / fragment ions (but IGNORE molecular ions) IGNORE retention times Examiner's Comments To get the mark for this question candidates had to include points about the separation of the mixture and identification of the compounds. Answers based on identification using retention times or measurement of molar mass did not score the mark.
	Total	13	
1	monomers join / bond / add / react / form polymer / form chain AND another product / small molecule / $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl} \checkmark$	1	IGNORE specific reference to number of molecules Examiner's Comments Most candidates knew this definition and the

6.2.3 Polyesters and Polyamides

			majority of those who failed to score this mark omitted to the word monomer.
	 Connectivity is penalised only in this question	2	DO NOT ALLOW -HO (penalise connectivity once only) Both structures must be skeletal DO NOT ALLOW stray sticks (skeletal means CH_{3} attached) DO NOT ALLOW structure with a C shown, e.g. ALLOW Examiner's Comments Skeletal formulae were often very well drawn with incorrect connectivity being penalised very rarely. Some candidates knew the structure of the monomers but did not present them as skeletal formulae. If a structural formula is used for working it should be crossed out and not left as an alternative answer to the skeletal formula.
	 ester link MUST be fully displayed OR	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW

6.2.3 Polyesters and Polyamides

6.2.3 Polyesters and Polyamides

6.2.3 Polyesters and Polyamides

			2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown (do not have to be dotted)
	d	 OR structure with NH rather than $\mathrm{NH}_{2}{ }^{+}$ OR structure with NH_{2} rather than $\mathrm{NH}_{3}{ }^{+}$ $\mathrm{CH}_{3}-\mathrm{OH}$ Correct charge and number of protons on both nitrogen atoms	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Total	14	
1	a	Step 1: add HCN OR $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{KCN}$ $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ Step 2: react with $\mathrm{H}_{2} / \mathrm{Ni}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}_{2}$	4	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous first mark can be implicit from equation. third mark can be implicit from equation if Ni shown as catalyst (e.g. above the reaction arrow) ALLOW $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+4[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}_{2}$
		because (compound \mathbf{D}) forms hydrogen bonds form with water demonstrated through diagram showing: - dashed line between - OH and (:) OH_{2} - dashed line between - NH_{2} and (: $) \mathrm{OH}_{2}$	3	dipole and lone pair are not required IGNORE bond angles Diagram does not need to show all of Compound D (and IGNORE if wrong)

6.2.3 Polyesters and Polyamides

(

