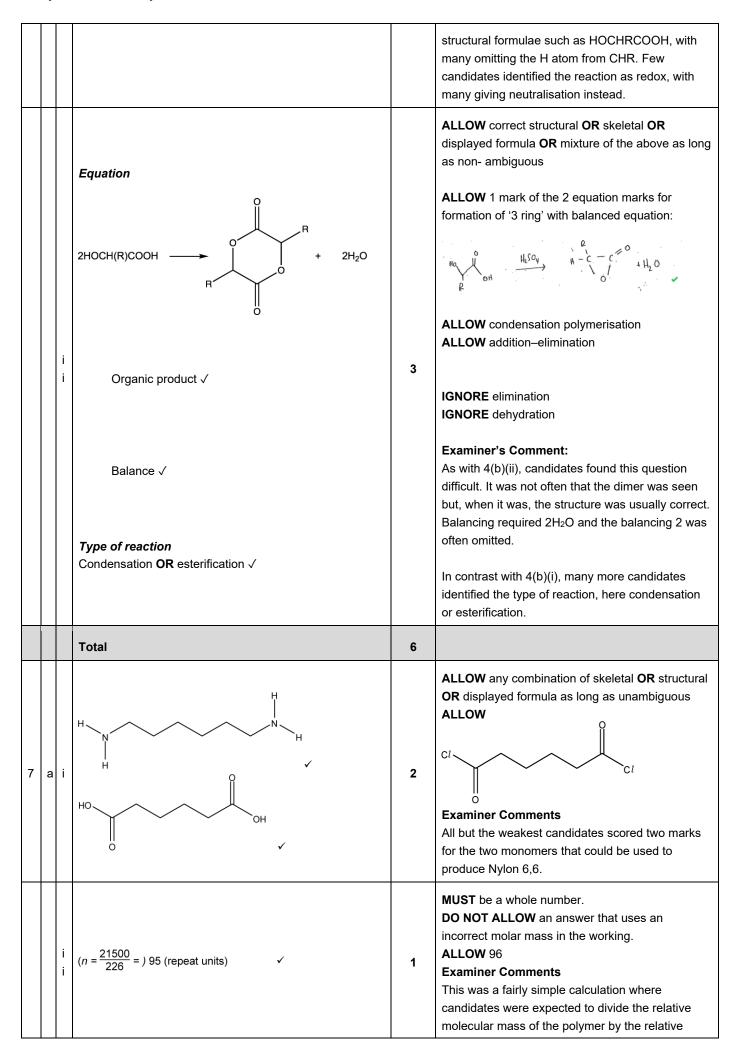
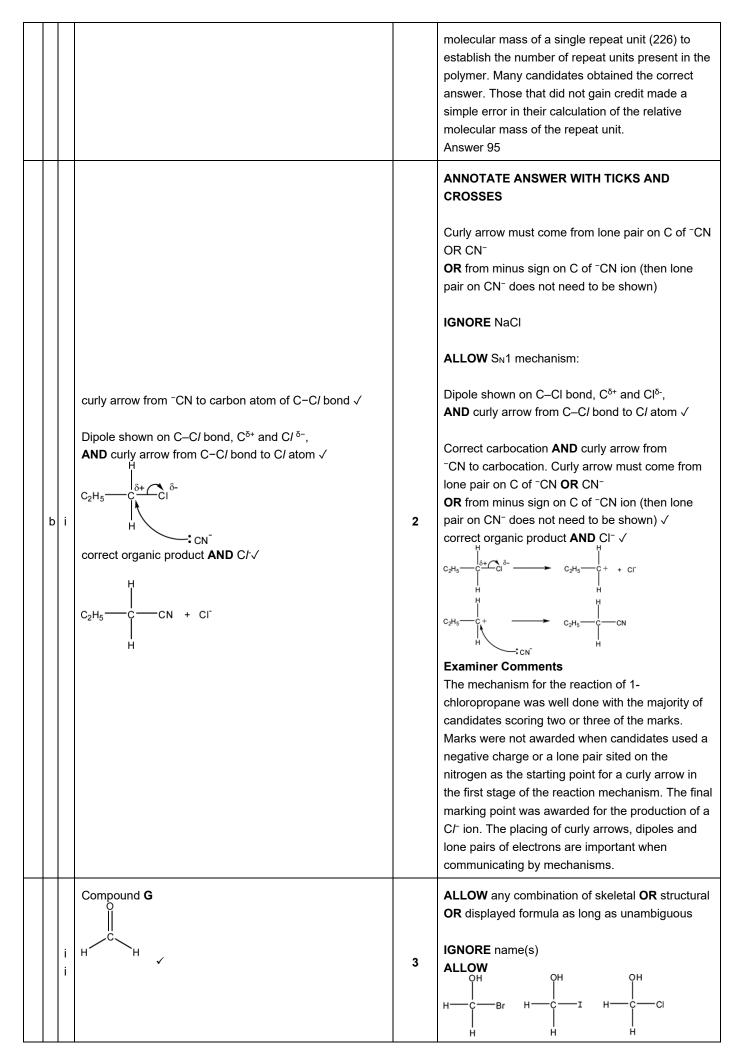
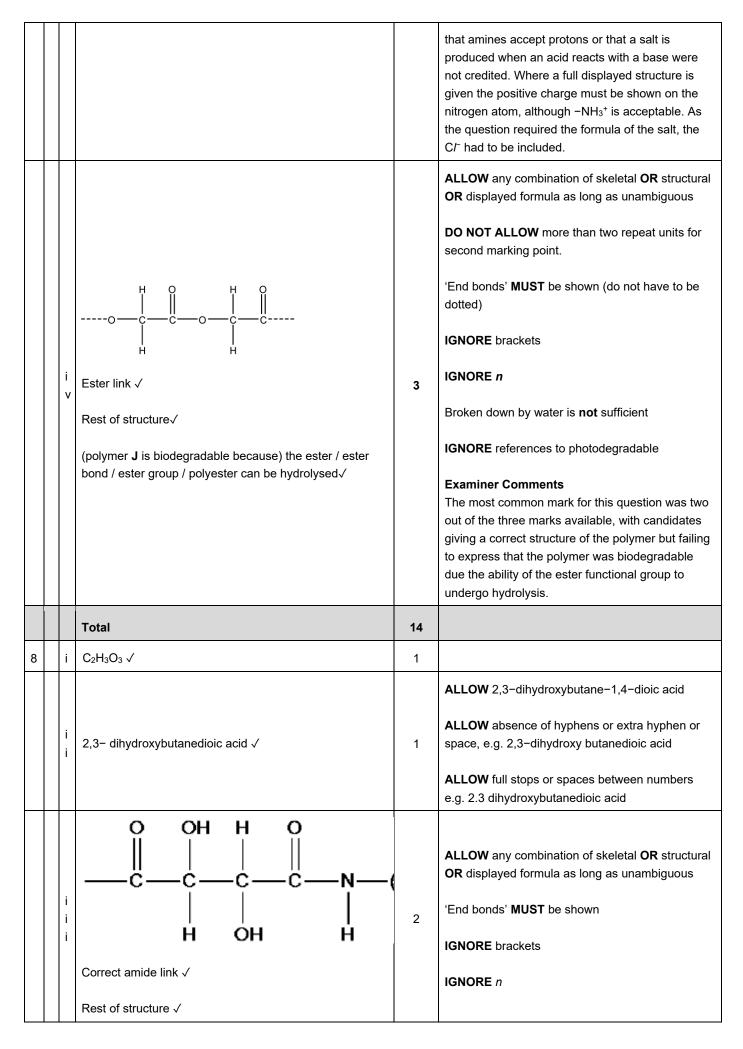
Mark scheme – Polyesters and Polyamides

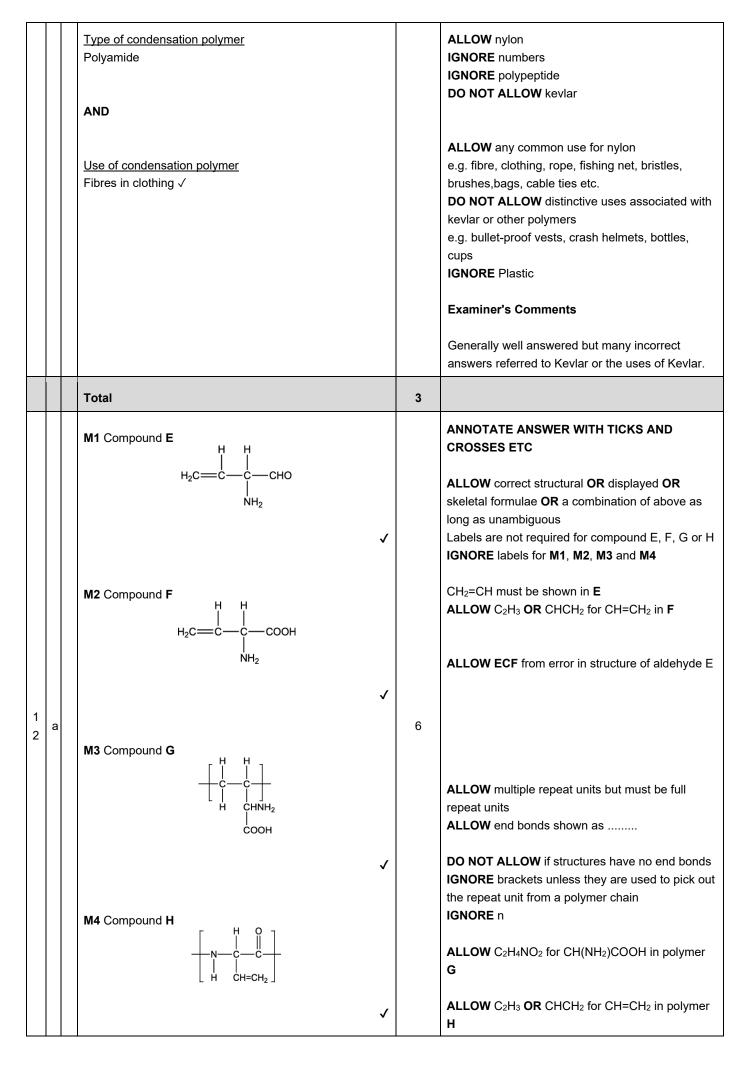

Questi on	Answer/Indicative content	Mark s	Guidance
1 i	Ester Amide Amine Carboxylic acid 4 groups correct √ √ √ 3 groups correct √ √ 2 groups correct √	3 (AO1. 2×3)	 IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group e.g. benzene, phenyl, aryl, arene, methyl
i	Methanol 1 mark $H_{3}C - OH \checkmark$ $H_{3}C - OH \checkmark$ $H_{3}C - OH \checkmark$ $H_{3}C - OH \checkmark$ $H_{3}C - OH \checkmark$ $H_{2} + H_{3} $	4 (AO2. 5×4)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW + charge on H of NH ₃ group, i.e.NH ₃ ⁺ If BOTH amino acids are shown with NH ₃ groups (without the + charge) OR as NH ₂ ⁺ groups, award 2 of the 3 marks for the amino acids If BOTH amino acids are shown as correctly balanced salts, e.g NH ₃ Cl, all marks can be awarded.
i	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 22.4 OR 22 OR 23 award 3 marks n(aspartame) in 1 can = $0.167 / 294 = 5.68 \times 10^{-4}$ (mol) \checkmark n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75 = 0.01275$ (mol) \checkmark number of cans = $0.01275 / 5.68 \times 10^{-4} = 22.4 \checkmark$	3 (AO2. 2×3)	If there is an alternative answer, apply ECF and look for alternative methods Alternative methods n(aspartame) in 1 can = $0.167 / 294$ = 5.68×10^{-4} (mol) \checkmark n(aspartame) per kg = $5.68 \times 10^{-4} / 75$ = 7.57×10^{-6} (mol) \checkmark number of cans = $1.7 \times 10^{-4} / 7.57 \times 10^{-6}$ = $22.4\checkmark$ OR n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75$ = 0.01275 (mol) \checkmark mass(aspartame) limit per day = 0.01275×294 = 3.7485 (g) \checkmark


				number of cans = 3.7485 / 0.167 = 22.4 √
		Total	10	
2	i	$\frac{O}{O} = O = O = O = (CH_2)_4 = O = O = O = (CH_2)_4 = O = O = O = O = O = O = O = O = O = $	2 (AO1. 2) (AO2. 5)	ALLOW the 'O' or C=O at either end, e.g. $\begin{array}{c} $
	i i	the ester/ ester bond/ ester group /polyester can be broken down √ OR It can be hydrolysed √	1 (AO3. 2)	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
	ii	$\int_{HO}^{0} -(CH_{2})_{2} - \int_{OH}^{0} + 2SO(2) \longrightarrow \int_{OH}^{0} -(CH_{2})_{2} - \int_{OH}^{0} + 2SO_{2} + 2HO(2)$ SOCI ₂ in equation \checkmark Structure of diacyl dichloride \checkmark Complete balanced equation \checkmark	3 (AO1. 1) (AO1. 2) (AO2. 6)	ALLOW alternative approach using PCl₅ or PCl₃
		Total	6	
3		$HN + C + H_2O $	2 (AO 3.2)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H NO H C C C C C C C C C C C C C C C C C C

			C ₃ H ₃ NO cyclic organic product. Any cyclic structure of C ₃ H ₃ NO that met the bonding rules for C, H, N and O was credited. Examples included a 4-membered ring lactam and substituted cyclopropenes. A significant number of candidates showed an equation for the reaction of two molecules of the amino acid to form 2 H ₂ O and a cyclic dipeptide. Although chemically feasible, the dipeptide could not be credited because the molecular formula was C ₃ H ₃ NO in the question. This error could have been avoided if the information in the question had been used.
	Total	2	
4	One mark for each correct structure/reagent as shown below $\begin{split} & \qquad $	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW PCI5 OR PCI3 for reagent mark. IGNORE references to temperature for reagent mark IGNORE additional reagents shown with SOCI2/PCI3/PCI3 e.g. H ₂ O, AICI3, HCI etc. IGNORE names (question asks for structures of organic compounds and formula of reagent) DO NOT ALLOW more than two repeat units ALLOW 1 mark for one correct repeat unit e.g.



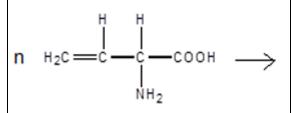
					full marks after. Exemplar 3 shows a good response.
					Exemplar 3
					HO CH_{2} $H_{2}N$
					This response has correctly identified the amino acid on the left hand side of the amide link and also shown this as a carboxylate. Consequently the first mark has been achieved. The right hand amino acid has also been identified correctly. However, the amide in the R group has not been hydrolysed so this response only scores one of the two marks available for this product. Notice the candidate has presented their structures clearly with the atoms drawn in a similar arrangement to the protein shown in the question. This is a good strategy to avoid errors and omissions when drawing organic structures.
			Total	3	
					ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous
			Equation		ALLOW 2HOCH(R)COOH + Mg \rightarrow 2HOCH(R)COO ⁻ + Mg ²⁺ + H ₂
		i	2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO) ₂ Mg +		ALLOW multiples
6			H ₂	3	IGNORE poor connectivity to OH groups Given in question
			Organic product √		
			Balance √ <i>Type of reaction</i>		Examiner's Comment: Candidates found this part difficult and the problem presented many opportunities for errors. Many candidates tried to show charges for the salt formed but often the 2+ charge was missing on Mg ²⁺ or Mg ⁺ was shown. The balanced equation
			Redox √		required a balancing 2 before compound A but this was often omitted. Candidates using skeletal formulae fared better than attempts to show

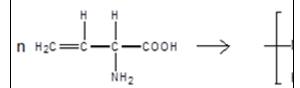



	jents			
Rea	tion 2: H ₂	AND Ni √		ALLOW any suitable metal catalyst e.g. Pt
				ALLOW LiAIH ₄ for reagent in reaction 2
				DO NOT ALLOW NaBH4 for reagent in reaction
				IGNORE names (question asks for formulae)
				IGNORE references to temperature and/or
				pressure
_				ALLOW H ⁺ (aq)
Rea		Correct formula of an aqueous acid		IGNORE dilute
	e	e.g. HC/(aq)/H₂SO₄(aq) √		ALLOW formula of an acid AND water
				e.g. HC/ AND H ₂ O
				H ₂ SO ₄ AND H ₂ O
				Examiner Comments
				Although many candidates were able to provid
				the structure of methanal as the starting mate
				for this synthesis, the structures of
				chloromethanol, bromomethanol and
				iodomethanol were accepted as suitable
				alternatives. It should be noted that hydrolysis
				carried out using aqueous acid and that dilute
				is not a suitable alternative.
				IGNORE NH ₂ group donates electron pair
				ALLOW nitrogen donates an electron pair to I
				DO NOT ALLOW nitrogen donates lone pair
				acid
				IGNORE comments about the O in the
				–OH group
				Compound H is a base is not sufficient (role
				lone pair required)
Expl	anation			
Nitro	nan electron	pair OR nitrogen lone pair		DO NOT ALLOW nitrogen/N lone pair accept
	Jen election			hydrogen (<i>proton/H⁺ required</i>)
	ots a proton	/ H⁺√		ALLOW any combination of skeletal OR struct
			2	OR displayed formula as long as unambiguou
			_	ALLOW
Stru	ture of salt	:		OH H
	он н 			
н—		+ NH ₃		нсNH3C1
		NI 13		
	I I Н Н	AND CT 🗸		H H <i>i.e.</i> charges not require
				IF charges are shown both need to be preser
				ALLOW charge either on N atom or NH_3^+
				IF displayed then + charge must be on the
				nitrogen
				Examiner Comments
				Only 20% of candidates were awarded both n
				for this question. The commonest error was a
				failure to state that the N atom has a lone pair
			1	electrons that can gain a proton. Answers stat

	iv	$[H_{3}N^{+}(CH_{2})_{6}NH_{3}^{+}] [-OOC(CHOH)_{2}COO^{-}]$ OR $[H_{3}N(CH_{2})_{6}NH_{3}]^{2+} [OOC(CHOH)_{2}COO]^{2-}$ Positive ion correct \checkmark Negative ion correct \checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW charge either on N atom or NH ₃ ⁺ Negative charge must be on COO ⁻ ALLOW[H ₂ N(CH ₂) ₆ NH ₃ ⁺] [⁻ OOC(CHOH) ₂ COOH]
		Total	6	
9	i	(optical isomers are) non-super imposable mirror images \checkmark Two 3D structures of serine that are mirror images irrespective of connectivity \checkmark H_2OH	3	
	i	Dipeptide Ser-Gly $H_{2}N - C - C - N - C - C - C - C - C - C - $	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW structures in any order
		Total	6	
1 0	i		1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous DO NOT ALLOW more than one repeat unit DO NOT ALLOW if structure has no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n Examiner's Comments

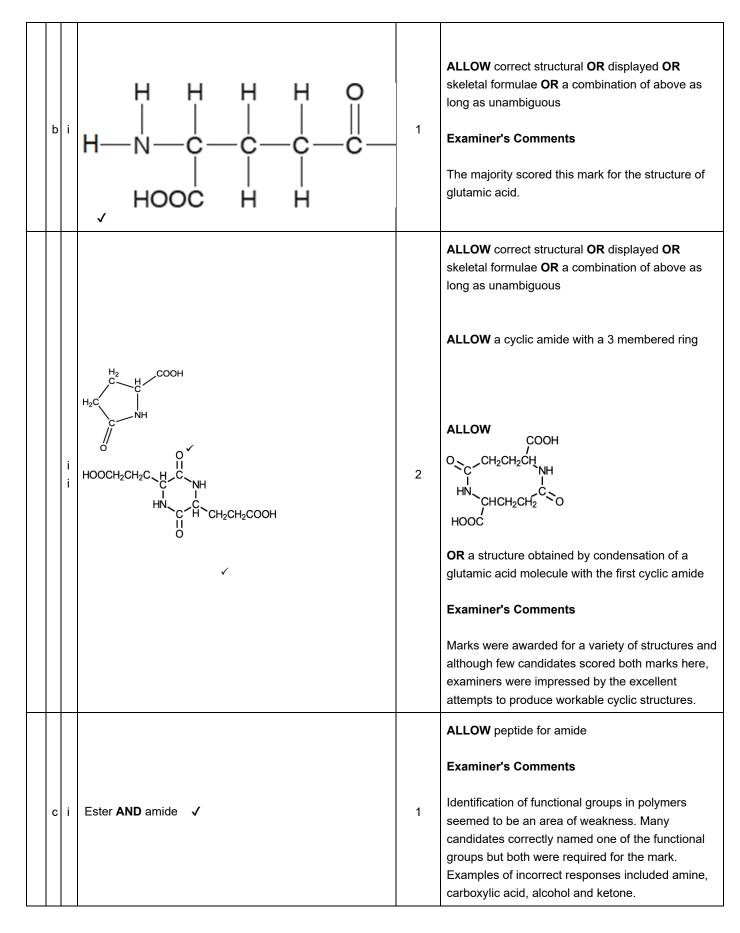
Image: Section of the section of th				<u> </u>
Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable Image: Section of the polymer is photodegradable <th>h two repeat uni</th> <th>wit</th> <th>wi</th> <th>Although many incorrect structures and structures with two repeat units were seen, this question was well answered by the majority of candidates.</th>	h two repeat uni	wit	wi	Although many incorrect structures and structures with two repeat units were seen, this question was well answered by the majority of candidates.
Image:	NOTATE WITH	AM	AI	ANNOTATE WITH TICKS AND CROSSES ETC.
Any two from: • Ester (links in the polymer) OR (PLA is a) polyester • GNORE PLA forms hydrogen bonds to value polyester • Monomer/lactic acid/product (is soluble because it) forms hydrogen bonds to water 3 IGNORE infrared radiation • polymer is photodegradable • the C=O bond absorbs radiation/uv/light √/ 3 IGNORE infrared radiation • the C=O bond absorbs radiation/uv/light √/ Maximum of 2 marks if hydrolysed/hydrolyses does no inthe answer ALLOW (ester) hydrolyzed • www: • the C=O bond absorbs radiation/uv/light √/ Maximum of 2 marks if hydrolyzed Examiner's Comments • ydrolysed/hydrolysis/hydrolyses • spelled correctly in the correct context The question discriminated well and relation and explanation of the polymer dissolving process taking after hydrolysis of the polymer chain. • Total 4 • H ₂ N(CH ₂) ₈ NH ₂ √ 2 ALLOW correct structural OR displayed disclosed for a substantiation of at long as unambiguous • H ₂ N(CH ₂) ₈ NH ₂ √ 2 ALLOW acid chloride, CIOC(CH ₂) ₈ COCI • H ₂ N(CH ₂) ₈ NH ₂ √ 2 ALLOW acid chloride, CIOC(CH ₂) ₈ COCI				ALLOW (ester) hydrolysis/(ester) hydrolyses IGNORE acid/alkaline (hydrolysis)
Any two from: • Ester (links in the polymer) OR (PLA is a) polyester • IGNORE biodegradable i • Monomer/lactic acid/product (is soluble because it) forms hydrogen bonds to water 3 IGNORE infrared radiation i • polymer is photodegradable • the C=O bond absorbs radiation/uv/light √/ Maximum of 2 marks if hydrolysed/hydrolysis/hydrolyses does no inthe answer ALLOW (ester) hydrolysed/hydrolysis/hydrolyses Spelled correctly in the correct context Maximum of 2 marks if hydrolysed/hydrolyses does no inthe answer ALLOW (ester) hydrolysed/hydrolyses Spelled correctly in the correct context The question discriminated well and relat candidates were able to score full marks there being several atternative scoring po in the mark scheme. Many based their ar an explanation of the polymer dissolving process taking after hydrolysis of the polymer chain. 1 i HaN(CH ₂) ₈ NH ₂ √ 4 1 i HaN(CH ₂) ₈ NH ₂ √ 2 1 i HOOC(CH ₂) ₄ COOH √ 2) hydrolysed √
Image: spolyester I	NORE PLA form	IG	IG	IGNORE PLA forms hydrogen bonds to water
i i) forms hydrogen bonds to water 3 IGNORE infrared radiation i polymer is photodegradable Allow (ster) hydrolysed/hydrolysis/hydrolyses does no in the answer i www.intercenter Allow (ster) hydrolysed/hydrolysis/hydrolyses i www.intercenter Allow (ster) hydrolysed/hydrolysis/hydrolyses inthe answer ALLOW (ster) hydrolyzed i www.inter Allow (ster) hydrolyzed i i requestion discriminated well and relation of the polymer dissolving process taking an explanation of the polymer dissolving process taking after hydrolysis of the polymer dissolving process taking after hydrolysis of the polymer chain. i H2N(CH2)8NH2 √ 4 i H2N(CH2)8COOH √ 2	NORE biodegrad	IG		
Maximum of 2 marks if Maximum of 2 marks if hydrolysed/hydrolysis/hydrolyses spelled correctly in the correct context The question discriminated well and relat candidates were able to score full marks there being several alternative scoring pc in the mark scheme. Many based their ar an explanation of the polymer dissolving rather than the dissolving process taking after hydrolysis of the polymer chain. 1 i i H2N(CH2)sNH2 √ H2N(CH2)sNH2 √ H0OC(CH2)sCOOH √	NORE infrared r	3 IG	er	ogen bonds to water 3 IGNORE infrared radiation
Image: Specific Contract Specific C	drolysed/hydroly ne answer	hy int	M: hy int	Maximum of 2 marks if hydrolysed/hydrolysis/hydrolyses does not appea inthe answer
1 i H2N(CH2)6NH2 √ 1 1 i H2N(CH2)6NH2 √ 2 ALLOW correct structural OR displayed 0 skeletal formulae OR a combination of at long as unambiguous 1 i H2OC(CH2)4COOH √ 2 ALLOW acid chloride, CIOC(CH2)4COOH √			E	s/hydrolyses Examiner's Comments
1 i Total 4 1 i H2N(CH2)6NH2 √ ALLOW correct structural OR displayed or skeletal formulae OR a combination of at long as unambiguous 1 i H2N(CH2)6NH2 √ 2 ALLOW acid chloride, CIOC(CH2)4COOH √	ndidates were al re being severa he mark scheme	ca the in	th ca th in	candidates were able to score full marks despite there being several alternative scoring points liste in the mark scheme. Many based their answer on
1 i $H_2N(CH_2)_6NH_2\checkmark$ ALLOW correct structural OR displayed of skeletal formulae OR a combination of at long as unambiguous 1 i $H_2N(CH_2)_6NH_2\checkmark$ 2 ALLOW acid chloride, CloC(CH_2)_4COCl 1 HOOC(CH_2)_4COOH \checkmark 2 Examiner's Comments	her than the dise	rat	ra	rather than the dissolving process taking place
$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} i \\ H_2N(CH_2)_6NH_2 \checkmark \\ HOOC(CH_2)_4COOH \checkmark \end{bmatrix} \begin{bmatrix} H_2N(CH_2)_6NH_2 \lor \\ HOOC(CH_2)_4COOH \checkmark \end{bmatrix} \begin{bmatrix} H_2N(CH_2)_6NH_2 \lor \\ HOOC(CH_2)_4COOH \lor \\$		4	4	4
1 i 1 i HOOC(CH2)4COOH √ HOOC(CH2)4COOH √ Examiner's Comments	eletal formulae C	sk	sk	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
Examiner's Comments				
	aminer's Comn	Ex	E	Examiner's Comments
Very well answered. The vast majority of candidates scored full marks on this ques				Very well answered. The vast majority of candidates scored full marks on this question.
i Both answers required for one mark	th answers requ	1 Bo	1 Bo	Both answers required for one mark



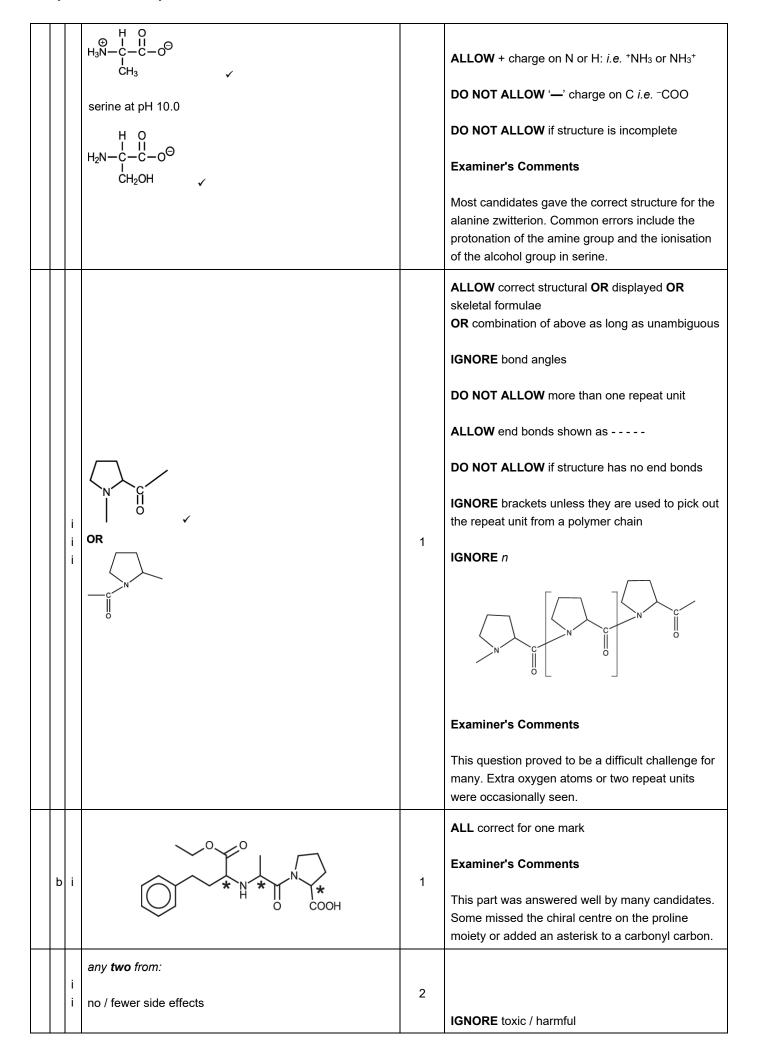

ALLOW ECF from NH₂CH₂CH=CHCOOH for the formation of compound G or compound H

ALLOW alkene forms addition polymer / polymer with same empirical formula as monomer

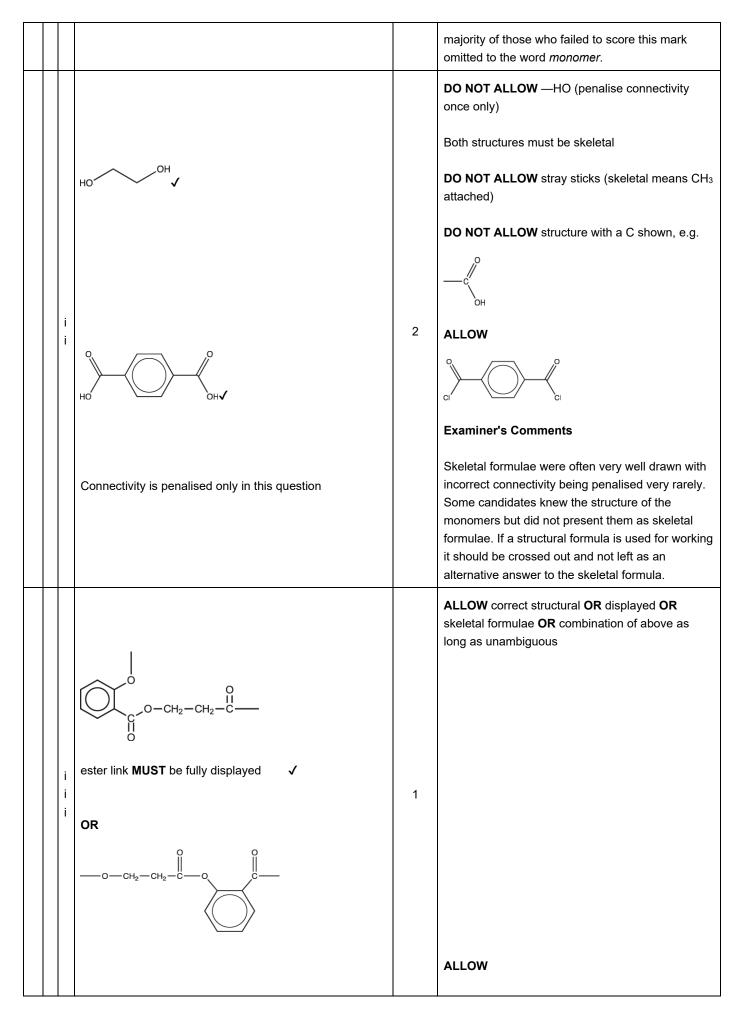
ALLOW equation for reaction

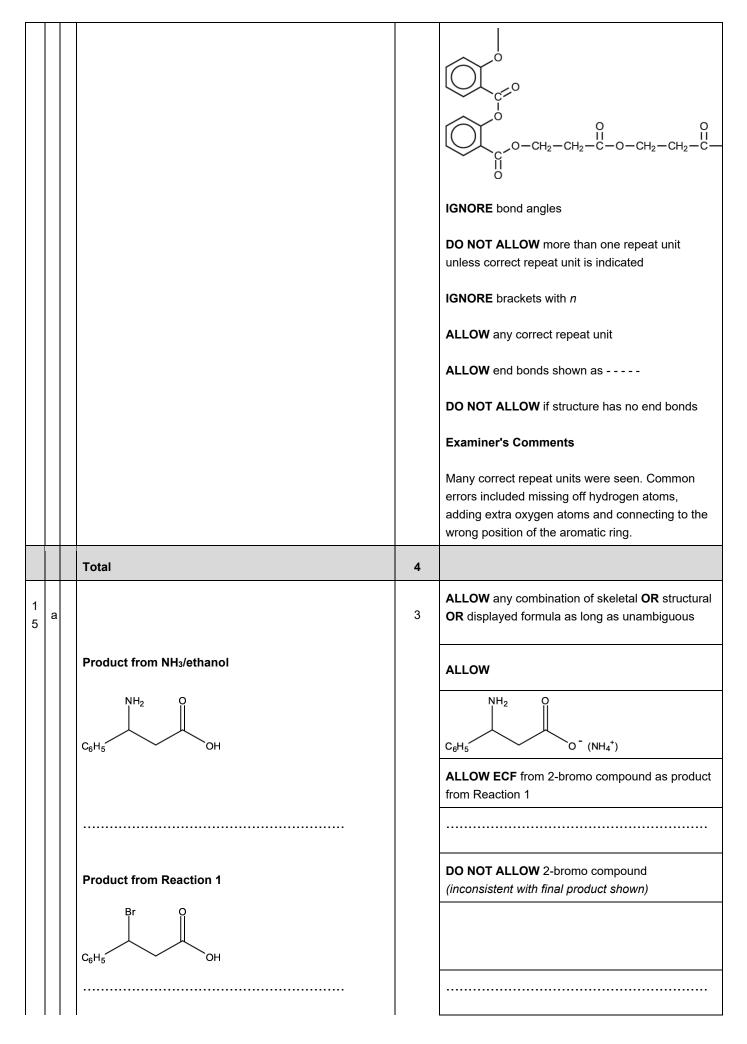


ALLOW amino acid forms condensation polymer OR (molecules of) compound F join / bond / add / react / form polymer and water / small molecule ALLOW equation for reaction

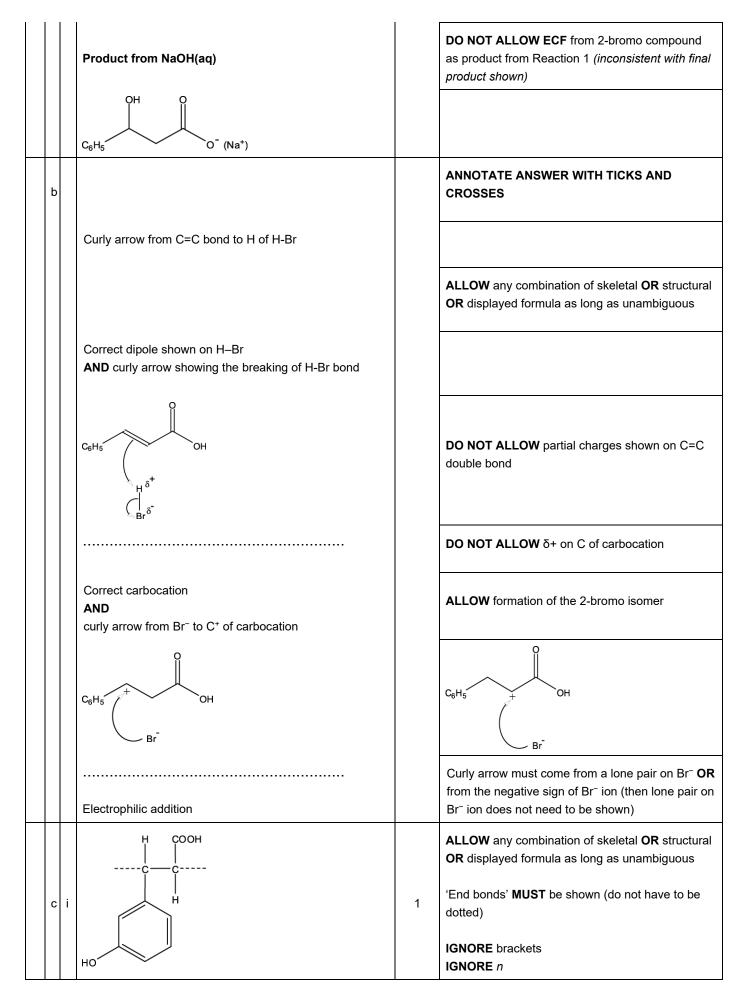


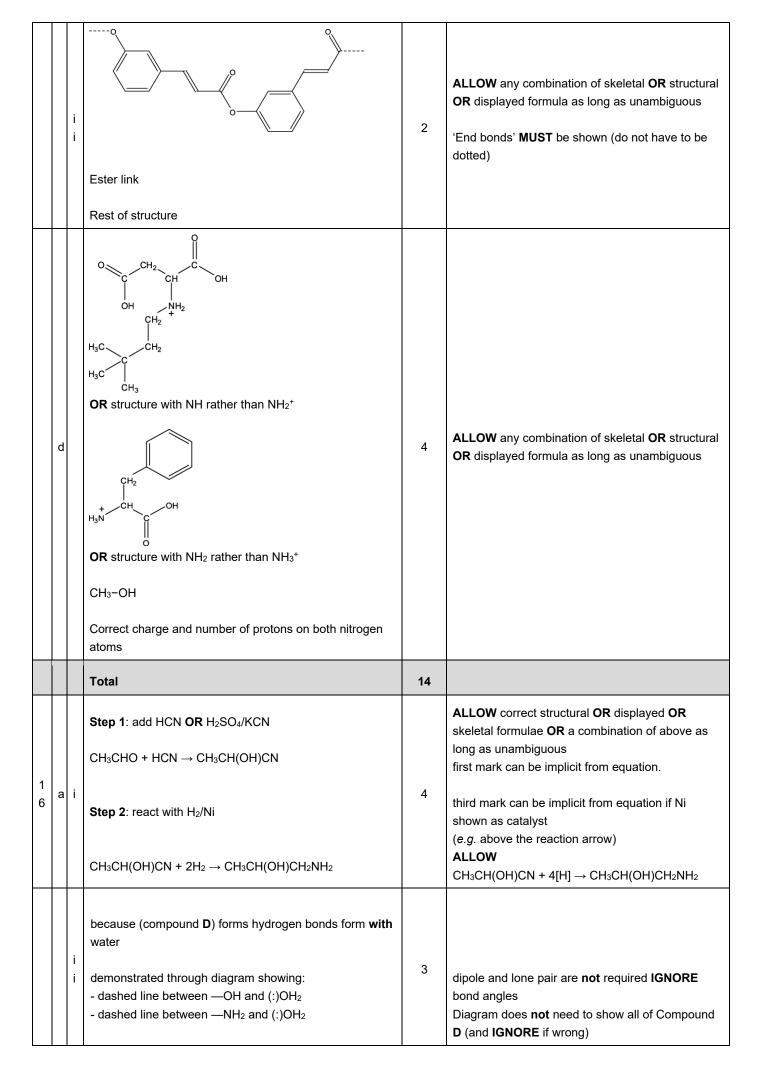
Examiner's Comments

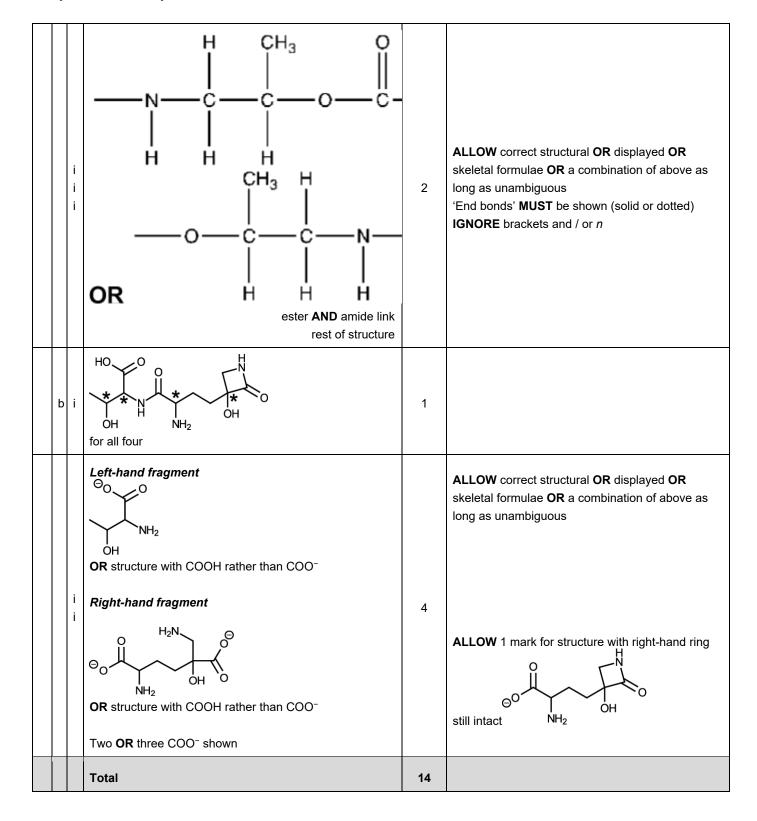

This question discriminated well and many well organised and well-presented answers were seen. Candidates were usually able to identify the aldehyde structure in compound **E** and those who failed to include a chiral centre in compound **E** had possibly missed essential information in the stem of the question. However, they could still score marks for the polymer structures by the application of error carried forward. Some candidates correctly identified the four structures but then missed the last two marks for a description of how the polymers are formed. Although labels were not required to score marks for the four structures, the description of the formation of the polymers had to be linked to the correct structure or the correctly labelled compound and some candidates lost marks here because their description was linked to the wrong polymer.



		i	$\int_{HO} (CH_2)_4 - C (OH_2)_4 $ $\int_{H_2N} (CH_3)_4 - C (OH_2)_4 $ $\int_{H_2N} (CH_3)_4 - C (H_3)_4 $	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Functional groups do not need to be fully displayed ALLOW structures as shown; the O–H bond and the N–H bonds in the functional groups do not need to be displayed DO NOT ALLOW -COOH ALLOW $O_{L} I I I I I I O_{L} O_$
		ii	(The molecule / amide / ester) can be hydrolysed ✔	1	 ALLOW (the molecule / amide / ester) can form hydrogen / Hbonds with water IGNORE acid / base Examiner's Comments A well answered question with marks equally divided between answers that either suggested that the polymer can be hydrolysed or that the polymer can form hydrogen bonds with water. A statement that the polymer is soluble in water was not sufficient to score the mark.
			Total	13	
1 3	а	i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW peptide chains Examiner's Comments Many correct dipeptide structures were seen. Common errors included peptide chains and including extra oxygen atoms in the amide link.
		i i	alanine at pH 6.0	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous




		increases the (pharmacological) activity / effectiveness Reduces / stops the need for / cost / difficulty in separating stereoisomers / optical isomers √√		IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate" Examiner's Comments Most candidates gained this mark by stating that the use of a single stereoisomer results in fewer side effects and increased pharmacological activity. Vague answers and comments about a reduced dose did not score marks.
			4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on H of NH ₂ groups, <i>i.e.</i> NH ₂ ⁺ IGNORE negative (counter) ions Examiner's Comments This question discriminated well. Most candidates were able to score one mark for the formula of ethanol. Only a small number of able candidates scored full marks for including the correct formulae for the protonated amine groups formed during acid hydrolysis.
	iv	idea of separating (the components / compounds) AND idea of (identifying compounds by) comparison with a (spectral) database ✓	1	ALLOW (identifies compounds) using fragmentation (patterns) / fragment ions (but IGNORE molecular ions) IGNORE molecular ions) IGNORE retention times Examiner's Comments To get the mark for this question candidates had to include points about the separation of the mixture and identification of the compounds. Answers based on identification using retention times or measurement of molar mass did not score the mark.
1 4	i	monomers join / bond / add / react / form polymer / form chain AND another product / small molecule / H ₂ O / HCl √	13	IGNORE specific reference to number of molecules Examiner's Comments Most candidates knew this definition and the



6.2.3 Polyesters and Polyamides

